The Distribution of Acetate-derived Oxygens in the Tetronic Acids of *Penicillium multicolor*

John S. E. Holker,*a Eugene O'Brien,a Richard N. Moore,b and John C. Vederas*b

- ^a Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Incorporation of sodium $[1^{-13}C, {}^{18}O_2]$ acetate by *Penicillium multicolor* into multicolanic, multicolic, and multicolosic acids, (1), (2), and (3), respectively, has given samples which when derivatised and examined by spin echo Fourier transform (S.E.F.T.) ${}^{13}C$ n.m.r. spectroscopy show ${}^{18}O$ -induced ${}^{13}C$ -satellites, confirming the previously proposed biosynthetic pathway involving oxidative fission of the β -ketide derived intermediate 6-pentylresorcylate (8) and establishing that lactonisation of the tetronic acid ring occurs by displacement from the C-1 carboxy-group by the C-4 enolic oxygen, rather than by lactol formation.

Scheme 1

(9)

ways.¹⁻³ These induced shifts, although small (0.01—0.055 p.p.m.), can readily be resolved in ¹³C n.m.r. spectra measured at 100 MHz, particularly with spin echo Fourier transform (S.E.F.T.) techniques.⁴ Most of the biosynthetic studies carried out to date involve feeding experiments with sodium [1-¹³C, ¹⁸O₆] acetate on poly- β -ketide derived metabolites.

It has been shown by feeding experiments with sodium $[1-^{13}C]$ -, $[2-^{13}C]$ -, $[1,2-^{13}C]$ -acetate and ethyl $[2-^{14}C]$ -6pentylresorcylate that the Penicillium multicolor metabolites multicolanic, multicolic, and multicolosic acids, (1), (2), and (3) respectively, are derived from acetate by oxidative fission of a β -ketide-derived 6-pentylresorcylate intermediate (8), as outlined in Scheme 1.5 On the basis of this pathway a key intermediate would be the diacid (9) in which the oxygen atom at C-4 and one of the two in the C-11 carboxy-group would be the only ones derived from the original acetate precursor. The question which interested us was whether the lactonisation of this involved in the generation of the metabolites (1), (2), and (3) would involve loss of oxygen from C-1. C-4, or both. In principle, a feeding experiment with [1-13C, ¹⁸O₂]-acetate and determination of the ¹³C-n.m.r. spectra of the resultant metabolites would not only permit this distinction, but would also provide excellent confirmatory evidence for the proposed pathway.

Accordingly, sodium [1-13C, 18O₂]acetate was added to cultures of *P. multicolor*, as previously described for [1,2-13C]

Table 1. 13 C-Chemical shifts of compounds (4), (6), and (7) derived from $[1^{-13}C, ^{18}O_2]$ acetate (90% $^{13}C, 81\%$ $^{18}O_2, 18\%$ $^{18}O_1$).

Carbon	δ (p.p.m.)a	Δ (p.p.m. \times 10 ²) ^b	¹⁶ O: ¹⁸ Oc
Methyl O-methylmulticolanate (4)			
1	161.3		
3	168.8		
4	151.1	1.9	59:41
11	164.6	1.2; 3.6	60:20:20
Dimethyl O-methylmulticolosate (6)			
1	160.7	<u> </u>	
3	168.1	_	-
4	150.4	2.1	60:40
9	172.9		and the same of th
11	164.2	0.75; 3.25	67:17:17
Methyl O-methylmulticolate 2,4-dinitrophenyl ether (7)			
1	161.5	_	_
3	168.8	_	
4	150.7	1.7	60:40
9	70.4		
11	164.4	1.2, 3.5	60:20:20

 $^{\rm a}$ F.t. spectra were measured on a Bruker WH400 spectrometer at 100.6 MHz for solutions in CDCl3 with Me4Si as internal standard. $^{\rm b\,^{18}O}$ Upfield shift values are relative to the $^{\rm 13}C^{\rm -16}O$ signal as internal reference and are ± 0.1 (p.p.m. \times $10^{\rm 2}$). $^{\rm e}$ Approximate values obtained from relative peak heights of the $^{\rm 13}C^{\rm -16}O$ and $^{\rm 13}C^{\rm -18}O$ signals in S.E.F.T. spectra.

HO
$$C_5H_{11}$$
 \uparrow^2
 $\uparrow^{16}O^{18}OC$
 $\downarrow^{18}C_{0}O$
 \uparrow^{2}
 \uparrow^{2}
 $\uparrow^{16}O^{18}OC$
 $\downarrow^{18}C_{0}O$
 $\downarrow^{18}C_{0}O$

Scheme 2

acetate incorporations,⁵ and the resultant mixture of metabolites was methylated with diazomethane and separated in the usual way⁵ to give the derivatives (4), (5), and (6) respectively. Rigorous purification of the oily methylated derivatives by repeated preparative layer chromatography (p.l.c.) produced pure samples of methyl O-methylmulticolanate (4) and dimethyl O-methylmulticolosate (6). However, methyl O-methylmulticolate (5) still retained minor impurities which interfered with the required ¹³C n.m.r. studies. It was, therefore, converted into a 2,4-dinitrophenyl ether (7) by treatment with 2,4-dinitrofluorobenzene in the presence of triethylamine in deuteriodichloromethane.⁶ The resultant crystalline derivative was rigorously purified by p.l.c. and characterised by mass spectrometry (M^+ 436.1118; $C_{19}H_{20}N_2O_{10}$ requires M 436.1118) and ¹H and ¹³C n.m.r. spectroscopy.

The ¹³C n.m.r. spectra of compounds (4), (6), and (7) recorded in the normal Fourier transform (F.t.) mode at 100.6 MHz showed relatively complex signals due to long range couplings resulting from multiple incorporation of ¹³C labels within the same molecule. By utilizing the S.E.F.T. technique, and spectral expansion (32 K data block/2000 Hz) of all the signals due to oxygen-bearing carbon atoms, it was

found that only the C-4 and C-11 signals showed upfield ¹⁸O-isotope shift satellites. The C-4 had one satellite signal but C-11 had two due to contributions from -C¹⁸O·OMe and -CO·¹⁸OMe (see Table 1). Furthermore, the combined intensities of the two satellite signals due to C-11 were approximately equal to that due to C-4, indicating equal incorporation of intact [1-¹³C, ¹⁸O₂]acetate at both sites.

The finding that [1-13C, 18O₂]acetate precursor leads to equal labelling of C-4 and C-11 with all other oxygen atoms being otherwise derived is entirely compatible with the previous proposals summarised in Scheme 1. Since doubly labelled [13C, 18O]-precursors permit detection of carbon-oxygen bonds which remain intact during biosynthesis, 1 this equal labelling of C-4 and C-11 establishes that the lactonisation of the tetronic acid ring does not involve lactol formation and dehydration, but rather displacement from C-1, probably via an activated thioester (see Scheme 2).

We thank Dr. T. T. Nakashima (University of Alberta) for

valuable technical assistance. Financial support by N.S.E.R.C. of Canada is gratefully acknowledged.

Received, 4th November 1982; Com. 1259

References

- 1 J. C. Vederas, Can. J. Chem., 1982, 60, 1637, and references cited therein.
- 2 A. E. DeJesus, W. E. Hull, P. S. Steyn, F. R. van Heerden, and R. Vleggaar, J. Chem. Soc., Chem. Commun., 1982, 902.
- 3 G. K. Smith, W. T. Mueller, L. J. Slieker, C. W. DeBrosse, and S. J. Benkovic, *Biochemistry*, 1982, 21, 2870.
- 4 M. P. Lane, T. T. Nakashima, and J. C. Vederas, J. Am. Chem. Soc., 1982, 104, 913.
- 5 J. A. Gudgeon, J. S. E. Holker, T. J. Simpson, and K. Young, *Bioorg. Chem.*, 1979, 8, 311.
- 6 L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis,' Wiley, New York, 1967, vol. 1, p. 321, and references cited therein.